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I. Introduction

During the past 13 months considerable progress has been made under

the present grant. The application of time-like damping and Riegel's

Rule to the transonic small perturbation equations has been investigated

and reported. In addition, a computer program that utilizes the full

equations in a rectangular coordinate system has been developed., This

program uses time-like damping and can be used in either the direct (body

specified, surface pressure and flowfield unknown) or design (surface

pressure specified, body and flowfield unknown) mode. A brief discussion

of the results of these efforts is presented in the following sections.

II. Small Perturbation Work

The-nonlinear transonic small perturbation equations have been

analyzed according to the stability criteria presented by Jameson,

and it has been determined that time-like damping is necessary in order

to ensure stability. This damping, which is of the form xt' has been

incorporated into the existing small perturbation equation computer

program. Typical results are shown on Figure 1. For this case, a NACA

0006 at Mach 0.9,.good results could only be obtained with the inclusion

of damping. Similar results have been obtained for NACA 0012 airfoils

and lifting cases.

The small perturbation studies have also included the application

Riegel's Rule to round-nosed airfoils. In general, the application of

Riegel's Rule has been found to improve the results obtainable from the

small perturbation equations. This work has been reported. (See list

of publications.)

III. Full Equation Work

A summary of this work is included as Appendix A.
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ABSTRACT

A numerical method for the design of transonic airfoils and the analysis

of the flow about them should not only be accurate but also be as simple as

possible in concept and approach. In particular, it should use coordinate

systems, input variables, and boundary condition treatments that can be easily

understood by the user. In addition, it would be desirable if the method

yielded the airfoil design shape for a given set of conditions without iter-

ation and used or computed nose and tail shapes that are aerodynamically and

structurally reasonable. Finally, it should not be limited to shocked or

shockless flows, but should be able to handle both types.

Previous design methods and programs have either been limited to shockless

designs (1)having complicated inputs not easily related to the problem by the

user, or have used the small perturbation equations which may be inaccurate

for thick blunt-nosed airfoil designs, (2) or have required iterative changes

in the desired pressure distribution. (3) The purpose of this paper is to

present and discuss a new numerical method suitable for the analysis or design

of supercritical transonic airfoils.

In order to achieve accuracy, the method utilizes the full inviscid

potential flow equations; and, in order to remain simple it solves the problem

in a stretched Cartesian grid system. See Fig. 1. No complicated mappings etc.

of the airfoil to a circle or other shape are used. The resultant working

computer program has several unique features. First, it can be used in either

the direct (analysis) mode in which the airfoil shape is prescribed and the

flowfield and surface pressures are determined, or in the inverse (design)

mode in which the surface pressures are given and the airfoil shape and flow-

field are computed. Second, it uses for the first time in a design program
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the rotated finite difference scheme, proposed by South and Jameson, (4,5)

which always has the correct zone of dependence in supersonic regions but

does not require the coordinate system to be closely aligned to the flow

direction. Third, unlike previous methods, the present program determines

the airfoil shape simultaneously with the flowfield relaxation solution.

Thus, when the converged solution is achieved, the final airfoil design is

known, and iteration is not required.

With respect to the rotated difference scheme, it should be noted that

the present approach is different from that used in Ref. (4-5). While still

rotating the difference scheme and viewing the relaxation process as a time-

like procedure, time terms in the streamwise direction are not introduced

implicitly as consequence of the manner in which the difference expressions

are formulated. Instead they are added explicitly and as in Ref. (4-5) used

to control the stability and convergence of the relaxation process. (Note that

these time-like terms correspond to the change between relaxation cycles and

thus approach zero as the solution converges.) By explicitly adding the time-

like damping, no additional damping is required; and the amount of damping required

can be easily determined by the user from the maximum local Mach number. In-

the design case, the latter would be known from the assumed surface pressure

distribution. A detailed discussion of the numerical scheme and its stability

will be presented in the full paper.

In the Cartesian like system, the airfoil surface and grids lines do not

coincide. Since in the design case the surface is not known a priori, this

lack is not a particular disadvantage, but nevertheless appropriate boundary

values at the computational boundary must be determined. The paper discusses

various approaches, points out which are unstable and which are stable, and

shows that accurate yet simple and easily understood relationships can be

established by expressing the velocities at the surface in a Taylor series
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about a boundary grid point. This approach is successfully used in both the

analysis (direct) and inverse cases (design).

When the present program is used in the design mode, the shape of the

nose region (typically 6-10% of the chord) is specified and the pressure is

prescribed over the remainder of the airfoil. This procedure is used for

several reasons. First, the nose region must be accurately known in order to

correctly fabricate an airfoil. Thus, by prescribing the nose shape, a possible

major.source of error is eliminated from the design procedure. Secondly, the

boundary condition in theinverse region is Ox and a starting value must be

known. With the present scheme, this value is determined by the direct

solution in the nose region and need not be estimated or iterated for. Third,

in some cases the designer may wish only to modify the aft portion of the air-

foil. This can be done with the present program since the switch point from

direct to inverse can be set anywhere from about 6% chord to the trailing edge

by an input variable. Finally, and perhaps most importantly, specification of

the nose shape gives the designer a physical entitly wherby he can control the

degree of closure at the tail. This will be shown later.

Any new numerical technique can only be verified by comparing its results

with those previously obtained by other investigators. As suggested by Lock,(6)

the NACA 0012 airfoil is an excellent test case because its shape can be prescribed

analytically. Figure 2.compares analysis results obtained by the present method

with those of Sells (7) for a lifting subcritical case. The two sets of data

are always within two percent of each other and the lift coefficients agree

exactly. In particular, notice the excellent agreement on the magnitude and

location of the upper surface pressure peak.

For supercritical cases, comparison and verification is somewhat more

difficult. However, a comparison with results obtained using Jameson's

conformal mapping program with 192 points on the airfoil is shown on Fig. 3.



The present method results were obtained with medium grid which yielded 66

points on the airfoil surface. Notice that the lift and moment coefficients

essentially agree exactly and that the pressure coefficients and shGck location

agree quite well. Similar verification of the accuracy of the present Cartesian

grid program has been obtained for biconvex and NACA 63A006 airfoils. Based

upon these results it is believed that the present approach is valid and quite

accurate.

.In order to verify the accuracy of the design mode of the program, the Cp

distribution shown on Fig. 3 was used as input. The resultant slopes for the

designed airfoil are shown on Fi,g. 4 and compared with the actual NACA 0012

,slopes. The agreement is excellent even though there is a strong shock on the

upper surface. For this case the computed surface ordinates were everywhere

within 0.33% (T/C)max of the actual NACA 0012 ordinates. Thus, it is believed

that the present design scheme is accurate and self-consistent.

As indicated above, in the present program the nose shape can be used by

the designer to control tail closure. The procedure is-'demonstrated on Fig. 5,

which shows three airfoils all designed for the same Cp distribution from 7%

chord to the trailing edge. Airfoil No. 4 has an NACA 0012 nose shape but

too thick of a tail. (The surfaces shown are displacement surfaces. The

actual airfoil would be obtained by subtracting the displacement thickness

from those ordinates.) Thus, a nonsymmetrical nose shape having a smaller

leading-edge radius was used on Airfoil No. 5, which resulted in a much bet-

ter tail size. Finally, for Airfoil No. 6 the lower surface nose region

ordinates were raised by 0.001, and this led to an even thinner trailing edge.

Figure 6 shows another case in which the nose shape was used to control

the trailing edge characteristics. The pressure distribution on this air-

foil, which is the solid curves on Figure 7, was selected to have the same



basic lift coefficient and lower surface pressure distribution as an NACA 0012

but without the strong upper surface shock wave. In this case, the nose.shape

is that associated with NACA OOXX airfoils; and, as can be seen, as the lead-

ing edge radius is increased, the tail opens up. Obviously any desired thick-

ness of the trailing edge displacement surfaces can be achieved by adjusting

the noseshape. Notice, also, that this adjustment does not require changing

the desired inverse Cp distribution.

Now a severe test for-a design program is whether or not an analysis

or direct solution of the designed airfoil returns the design or inverse Cp

distribution. Figure 7 comparesthe inverse Cp used to design airfoil No. 115

with that obtained from a direct solution (airfoil given).using the ordinates

for No. 115. The excellent agreement tends to verify the validity and accuracy

of the airfoils designed by the present program.

A final case is shown on Figure 8. An arbitrary pressure distribution,

dashed line, having an upper surface Mach number plateau around 1.2 followed

by a large jump at 76% chord was. selected for the inver.se input. On the lower

surface, the Cp was chosen to maintain subsonic flow. However, a bucket se-

lected according to the Stratford criteria was included to enhance lift. As

indicated, the design program uses a backward difference scheme with the Cp

input. Thus, in regions of large gradients the output, which is computed by

a central scheme and should be more accurate, will be different.

Now in the course of the inverse solution, the trailing edge displace-

ment surfaces that satisfied the input Cp were not parallel, and, thus, the

inviscid solution required a rear stagnation point behavior. The actual in-

verse Cp (central differences), indicated by the solid line, shows this be-

havior. In addition, the upper surface discontinuity was smoothed. Exami-

nation shows a smooth supersonic bubble and indicates that upper surface
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decelleration, while rapid, is not due to a shock wave of any significant

strength. Also shown is the result of a direct solution, which agrees

well with the actual inverse Cp. The airfoil shown is the actual shape

after the boundary displacement thickness has been subtracted. It is be-

lieved this result demonstrates that the present program can handle an

"arbitrary" Cp input and willyield verifiable results consistent with phy-

sical reality, even if the input Cp does not.

'In conclusion, it is believed that it has been shown that.

(1) It is not necessary to match the computational grid to the airfoil

surface and that very Occurate results can be obtained with a

Cartesian grid. This may be important for 3-D calculations where

mapping to the wing-body surfaces is frequently impractical.

(2) A.design method having simultaneous airfoil update, a logical

method for controlling trailing edge closure, and results that

are consistent and physically correct has been created and in-

corporated into a working program.
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Figure 1 -- Typical Grid System (Schematic)



-0.8

-0.4

C.
O 0

0.4

NACA 0012

0.8 M.. = 0.63 = 20

Present Results - C =0.335

Sells Results 0 CL =0.335

1,2
O 0.25 0.50 0.75 1.0

X/C

Figure 2 -- Comparison with Sells for Subcritical Lifting Case



-0.8

Cp.

-0.4

0

0.4

NACA 0012 Moo 0.75, =20

Present Jomeson

0.8 ' - Symbol O 8

C 0.440 0.440

CML -0.125 -0.124

1.2 ___

0 0.5 1.0
X /C

Figure 3 -- Comparison with Jameson for Supercritical Lifting Case



0.4
NACA 0012

Moo,=0.75, a= 20

ACTUAL INVERSE
0

0.3
CL= 0.440 C L=0.4 4 0

0.2,

0.1

-

0

UPPER SURFACE
SHOCK

-0.2
-O 0.5 1. O

X/C

Figure 4 -- Comparison of Actual Airfoil Slopes with

Those Computed by Design Program



0-

-0.1- CL =0.68 CMLE= -0.37
NOSE SHAPE- NACA 0012 T/C = 0.122

AIRFOIL NO.4

0.1-

0.1 - CL = 0.67 CMLE = -0.37

NOSE SHAPE NO. I T/C = 0.101

AIRFOIL NO.5

0.1

0-

-0.1 CL = 0.66 CMLE =-0. 3 7

NOSE SHAPE NO.2 T/C =0.098
AIRFOIL NO.6

M = 0.79, a - 00

Figure 5 -- The Use of Nose Shape to Control

Trailing Edge Closure, Example 1



-0.1 L CL = 0.47 CM LE= -0. 16
NOSE SHAPE- NACA 0010 T/C = 0. 107

AIRFOIL NO. 100.

0.1

-0.1 -CL =0.47, CMLE= -0. 16

NOSE SHAPE-NACA 0011 T/C= 0.120
AIRFOIL NO. 110

0.1

-0.1 NOSE SHAPE- NACA 0011 CL=0. 4  C MLE=-0.16
T/C = 0. 127

AIRFOIL NO. 115
Moo =0.75, a= 20

Figure 6 -- The Use of Nose Shape to Control

Trailing Edge Closure, Example 2



-0.8

-0.4

0.o,

AIRFOIL NO. 115
0.4 MO = 0.75, a=20

DIRECT INVERSE

OA -

0.8 C . 477 -CL_ 0.470
0.8

0.5 
1.0

X/C

Figure 7 -- Comparison of Inverse Cp Distribution with that Obtained byAnalysis of Designed Airfoil



1.2 Moo= 0.80, = -0.5 0

-0.8

-0D4RCTA 0.__0504 SYMBOL C CLMSOLUTION

INVERSE INPUT

ACTUAL INVERSE - 0.63 -0.35

DIRECT 0 A 0.62 -0.354

0.8 SOLUTION 
I -. A.-

0 0.5 1.0
X/C

Figure 8 -- Comparison of Cp Distributions


